

Personal Mobility Clutch

通过丰富的型号以及可定制尺寸·扭矩·疲劳寿命, 满足客户需求,提供最优方案

心本离合器应用于个人移动系列产品

凸轮&滚子式 可承受径向载荷

100%

开发状态:开发中 专利:申請中 特点: 无需轴承

应用示例:中央踏板轴

拖曳扭矩

21%

■椿本製 ■友商製

※本社调查

高扭矩类型凸轮开发 →最大扭矩的2.5倍(我司上代产品)

轻量化, 小型化

开发状态:量产中 专利:已取得 特点: 无需轴承

应用示例:中置电机马达轴 椿本製

拖曳扭矩

■友商製

※本社调查

回转角度差减半 高扭矩时曲轴移动量减半 ※与我们公司相比

高扭矩离合器

※图片仅供参考

支撑器类型 开发状态:量产中 特点:无需轴承,高扭矩,

> 省空间 应用示例:中置电机踏板轴

拖曳扭矩

■椿本製 ■友商製

※本社调查

凸轮&滚子式

凸轮&滚子式 开发状态:开发完成 可承受轴向·径向载荷

专利:申请中 特点: 无需轴承

可承受轴向载荷 应用示例:中置电机马达轴

轮毂单元

拖曳扭矩

■友商製

※本計调查

※无轴向载荷时的拖曳扭矩

凸轮&滚子式 用于轮毂单元

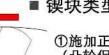
开发状态:开发完成 专利:已取得

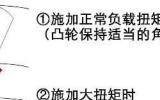
特点: 无需轴承 应用示例:轮毂单元

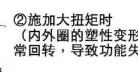
翻转:由于过载导致的失效模式

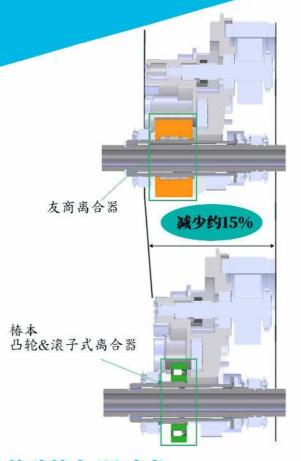
■ 锲块类型

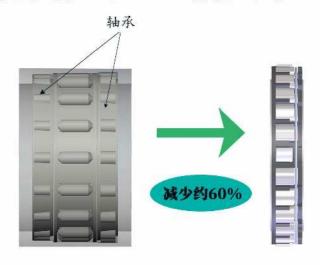
①施加正常负载扭矩 (凸轮保持适当的角度)


①施加正常负载扭矩 (凸轮保持适当的角度)


■ 桃形类型


(内外圈的塑性变形使凸轮异 常回转,导致功能失效)


②施加大扭矩时 (通过凸轮打滑,不会导致功能失效)


性能比较

· 离合器尺寸:减少约60%

· 总成宽度 :减少约15%

• 拖曳扭矩 :减少约80%

単位:mm

传动能力/尺寸表

※下列数据供参考(可根据客户需求/具体应用提供最优设计)

凸轮&滚子式 (可承受径向载荷)

参考示例	额定扭矩	最大额定扭矩	内圈轨道径	外圈轨道径	最小安装宽度
	N∙m	N·m	mm	mm	mm
Α	190	399	50	58.294	7.7
В	298	512	60	68.294	7.7
С	227	451	40	48.294	10.7
D	409	704	60	68.294	10.7
Е	178	414	30	38.294	14.7
F	455	788	50	58.294	14.7
G	1020	1170	100	108.294	14.7